Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nutrients ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: covidwho-20243208

RESUMO

Childhood obesity is a global public health problem. Worldwide, 41 million children under 5 years and 340 million children and adolescents between 5 and 19 years are overweight. In addition, the recent COVID-19 epidemic has further amplified this social phenomenon. Obesity is a condition associated with various comorbidities, such as nonalcoholic fatty liver disease (NAFLD). The pathophysiology of NAFLD in obesity is intricate and involves the interaction and dysregulation of several mechanisms, such as insulin resistance, cytokine signaling, and alteration of the gut microbiota. NAFLD is defined as the presence of hepatic steatosis in more than 5% of hepatocytes, evaluated by histological analysis. It can evolve from hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, hepatocellular carcinoma, and end-stage liver failure. Body weight reduction through lifestyle modification remains the first-line intervention for the management of pediatric NAFLD. Indeed, studies suggest that diets low in fat and sugar and conversely rich in dietary fibers promote the improvement of metabolic parameters. This review aims to evaluate the existing relationship between obesity and NAFLD in the pediatric population and to assess the dietary patterns and nutritional supplementations that can be recommended to prevent and manage obesity and its comorbidities.


Assuntos
COVID-19 , Doença Hepática Terminal , Hepatopatia Gordurosa não Alcoólica , Obesidade Infantil , Adolescente , Criança , Humanos , Pré-Escolar , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sobrepeso/metabolismo , Obesidade Infantil/metabolismo , COVID-19/metabolismo , Dieta , Fibrose , Doença Hepática Terminal/patologia , Fígado/metabolismo
2.
Hepatology ; 74(4): 1825-1844, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1372726

RESUMO

BACKGROUND AND AIMS: NASH will soon become the leading cause of liver transplantation in the United States and is also associated with increased COVID-19 mortality. Currently, there are no Food and Drug Administration-approved drugs available that slow NASH progression or address NASH liver involvement in COVID-19. Because animal models cannot fully recapitulate human NASH, we hypothesized that stem cells isolated directly from end-stage liver from patients with NASH may address current knowledge gaps in human NASH pathology. APPROACH AND RESULTS: We devised methods that allow the derivation, proliferation, hepatic differentiation, and extensive characterization of bipotent ductal organoids from irreversibly damaged liver from patients with NASH. The transcriptomes of organoids derived from NASH liver, but not healthy liver, show significant up-regulation of proinflammatory and cytochrome p450-related pathways, as well as of known liver fibrosis and tumor markers, with the degree of up-regulation being patient-specific. Functionally, NASH liver organoids exhibit reduced passaging/growth capacity and hallmarks of NASH liver, including decreased albumin production, increased free fatty acid-induced lipid accumulation, increased sensitivity to apoptotic stimuli, and increased cytochrome P450 metabolism. After hepatic differentiation, NASH liver organoids exhibit reduced ability to dedifferentiate back to the biliary state, consistent with the known reduced regenerative ability of NASH livers. Intriguingly, NASH liver organoids also show strongly increased permissiveness to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vesicular stomatitis pseudovirus as well as up-regulation of ubiquitin D, a known inhibitor of the antiviral interferon host response. CONCLUSION: Expansion of primary liver stem cells/organoids derived directly from irreversibly damaged liver from patients with NASH opens up experimental avenues for personalized disease modeling and drug development that has the potential to slow human NASH progression and to counteract NASH-related SARS-CoV-2 effects.


Assuntos
Doença Hepática Terminal/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Organoides/metabolismo , Adulto , Idoso , Biópsia , COVID-19/complicações , COVID-19/virologia , Diferenciação Celular/imunologia , Doença Hepática Terminal/imunologia , Feminino , Perfilação da Expressão Gênica , Voluntários Saudáveis , Hepatócitos/imunologia , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/citologia , Fígado/imunologia , Regeneração Hepática , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/virologia , Organoides/imunologia , SARS-CoV-2/imunologia , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA